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We analyze spin-density-wave �SDW� order in iron-based superconductors and electronic structure in the
SDW phase. We consider an itinerant model for Fe pnictides with two hole bands centered at �0,0� and two
electron bands centered at �0,�� and �� ,0� in the unfolded Brillouin zone. A SDW order in such a model is
generally a combination of two components with momenta �0,�� and �� ,0�, both yield �� ,�� order in the
folded zone. Neutron experiments, however, indicate that only one component is present. We show that �0,��
or �� ,0� order is selected if we assume that only one hole band is involved in the SDW mixing with electron
bands. A SDW order in such three-band model is highly degenerate for a perfect nesting and hole-electron
interaction only but we show that ellipticity of electron pockets and interactions between electron bands break
the degeneracy and favor the desired �0,�� or �� ,0� order. We further show that stripe-ordered system remains
a metal for arbitrary coupling. We analyze electronic structure for parameters relevant to the pnictides and
argue that the resulting electronic structure is in good agreement with angle-resolved photoemission experi-
ments. We discuss the differences between our model and J1-J2 model of localized spins.
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I. INTRODUCTION

The discovery of superconductivity in the oxypnictide
LaFeAsO �Ref. 1� created a new class of Fe-based high-Tc
superconductors—ferropnictides �FPs� The phase diagram of
FPs is similar to that of high-Tc cuprates and contains an
antiferromagnetic phase at small dopings and superconduct-
ing phase at larger dopings. There are two important distinc-
tions, however. First, parent compounds of FPs are antifer-
romagnetic metals, and second, the pairing symmetry in FPs
is, most likely, an extended s wave, with or without nodes.2,3

Electronic structure of parent FPs in the normal state has
been measured by angle-resolved photoemission �ARPES�
�Ref. 4� and by magneto-oscillations.5 It consists of two
quasi-two-dimensional �quasi-2D� near-circular hole pockets
of nonequal size, centered around � point �0,0�, and two
quasi-2D elliptic electron pockets centered around �0, ���
and ��� ,0� points in the unfolded Brillouin zone �BZ�
which includes only Fe atoms. For tetragonal symmetry, the
two electron pockets transform into each other under the ro-
tation by 90°. In the folded BZ, which is used for experimen-
tal measurements because of two nonequivalent As positions
with respect to an Fe plane, both electron pockets are cen-
tered around �� ,��. The dispersions near electron pockets
and near hole pockets are reasonably close to each other
apart from the sign change, i.e., there is a substantial degree
of nesting between hole and electron bands. There also exists
the fifth hole band near �� ,�� but it is more three dimen-
sional �3D� and does not seem to play a significant role, at
least for spin-density-wave �SDW� magnetism.

In this paper we analyze spin and electronic structures of
a magnetically ordered state in parent FPs below TSDW
�150 K.1,6,7 We will only focus on FeAs materials. Neutron
scattering measurements on parent FeAs pnictides have
found that the ordered momentum in the unfolded BZ is
either �0,�� or �� ,0�, i.e., magnetic order consists of ferro-

magnetic stripes along one crystallographic direction in an
Fe plane and antiferromagnetic stripes along the other direc-
tion.

Such magnetic order emerges in the J1-J2 model of local-
ized spins with interactions between nearest and next-nearest
neighbors �J1 and J2, respectively�, for J2�0.5J1.8,9 A local-
ized spin model, however, is best suitable for an insulator
and is generally not applicable to a metal unless the system is
close to a metal-insulator transition.9 An alternative scenario,
which we explore here, assumes that parent FeAs FPs are
“good metals” made of itinerant electrons, and antiferromag-
netic order is of SDW type. Given the electronic structure of
FPs, it is natural to assume that SDW order emerges, at least
partly, due to near nesting between the dispersions of holes
and electrons.10–17 Such nesting is known to give rise to
magnetism in Cr �Ref. 18�. The itinerant scenario for FPs
is largely supported by a reasonable agreement between
ab initio electronic-structure calculations19 and magneto-
oscillation and ARPES experiments,5,20–23 although
electronic-structure calculations also indicate that magnetism
partly comes from other fermionic bands which do not cross
the Fermi level.24

We discuss below several puzzling electronic and mag-
netic features of the SDW state which have not yet been
understood within the itinerant scenario. They include:

�i� A higher conductivity in the SDW state—the system
becomes more metallic below TSDW. Naively, one would ex-
pect a smaller conductivity due to at least partial gapping of
the Fermi surfaces �FS�. A reduction in the quasiparticle
damping, induced by such gapping, may slow down the de-
crease in conductivity, but the observed increase is highly
unlikely for a conventional SDW scenario.

�ii� A significant reconstruction of the electronic disper-
sion across the SDW transition and complicated FS topology
below TSDW, with more FS crossings than in the normal state
�Refs. 25–28�. Some ARPES measurements show25–27 that in
the SDW state visible dispersion remains holelike around the
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� point despite apparent mixing of electron and hole bands
while close to M = �� ,�� point in the folded BZ both elec-
tron and hole bands are present. Other measurements28 indi-
cate that hole and electron pockets are present both near M
and near � points.

�iii� The particular �0,�� �� ,0� ordering of Fe spins in the
unfolded BZ. It is straightforward to obtain �� ,�� ordering
in the folded BZ simply because hole and electron bands are
shifted by �� ,�� in the folded zone. However, SDW order in
the folded zone involves two separate magnetic sublattices
and unfolding reveals two SDW order parameters �OP� �� 1

and �� 2 with momenta Q1= �0,�� and Q2= �� ,0�, respec-
tively �see Fig. 1� A generic spin configuration then has the
form S��R�=�� 1eiQ1R+�� 2eiQ2R �the sublattice OPs are �� 1

+�� 2 and �� 1−�� 2�. For such configuration, next-nearest
neighbors are antiferromagnetically oriented but the length
and the direction of S� between nearest neighbors varies. Only
if either �� 1 or �� 2 vanish, OPs of the two sublattices align
parallel or antiparallel to each other, and the spin configura-
tion becomes the same as in the experiments. The issue then
is what interaction causes �� 1 or �� 2 to vanish.

Another unsolved issues which we do not address here are
the absence of magnetism in the nominally undoped LaFePO
and LiFeAs compounds and the type of a magnetic order in
Fe1+xTe /Se systems. The absence of magnetism in LaFePO
and LiFeAs could be due to the fact that these materials are
less quasi-two-dimensional, with less nesting.29 For
Fe1+xTe /Se, the experimental data are still controversial.30

The full analysis of possible SDW orderings in FeAs sys-
tems within a generic four-band model is quite messy and
one should have a good staring point to be able to understand
the physics. One way to analyze the problem is to solve first
the model of four equivalent 2D circular bands �two hole
bands and two electron bands� with isotropic interband and
intraband interactions, and then introduce anisotropy be-
tween the two hole bands, ellipticity of the two electron

bands, and anisotropy of the interactions. This approach has
been put forward by Cvetkovic and Tesanovic.31 They solved
exactly the isotropic model and found that SDW state is an
insulator—all four Fermi surfaces are fully gapped and that
there exists a degenerate manifold of SDW orders. The de-
generacy is the same as in J2 model of localized spins: the
SDW order involves two antiferromagnetic sublattices with
equal magnitudes of the OPs �i.e., �� 1 ·�� 2=0� but the angle
between the two sublattices �=cos−1��1

2−�2
2� / ��1

2+�2
2� can

be arbitrary. The �0,�� and �� ,0� states belong to this mani-
fold but are not yet selected in the isotropic model. The issue
not yet addressed within this approach is what happens with
a degenerate manifold once one moves away from the iso-
tropic limit.

Our starting point is different. We use the experimental
fact that the two hole FSs are of quite different sizes26 and
assume that one hole band interacts with electron bands
much stronger than the other. We then consider, as a first
approximation, a three-band model of one hole band cen-
tered around � point and two electron bands centered around
�0,�� and �� ,0�. We solve this model in the mean-field ap-
proximation and show that the SDW order is still degenerate
for isotropic interactions and circular bands. A degenerate
manifold consists of two antiferromagnetic sublattices with
generally nonequal magnitudes of the sublattice OPs. The
manifold includes �0,�� and �� ,0� states among many
others, and the overall symmetry is O�6�.

In terms of �� 1 and �� 2, the degeneracy implies that the
ground-state energy depends only on the combination ��� 1�2

+ ��� 2�2. The excitation spectrum of such degenerate state
contains five Goldstone modes. We then show that the ellip-
ticity of the electron bands and the anisotropy of the interac-
tions breaks the degeneracy and adds to the energy the term
�12��� 1�2��� 2�2 with positive �12. The full energy is then mini-
mized when either �� 1=0, or �� 2=0, ellipticity and the aniso-
tropy of the interactions both select �0,�� or �� ,0� stripe
order already at a mean-field level. This is one of the main
results of this paper. A stripe SDW order mixes the hole band
and one of the two electron bands but leaves another electron
band intact. As a result, the system remains a metal even at
strong SDW coupling. We verified that the selection of the
stripe order by the interactions between electron states holds
only if the interactions are in the charge channel. The same
interactions, but in the spin channel, select a different state
with �� 1= ��� 2, in which SDW order resides in only one of
the two sublattices, see Fig. 2�d�.

We did not consider corrections to the mean-field theory
�i.e., quantum fluctuations�. They are relatively small, at least
at weak coupling, although, very likely, they also break O�6�
symmetry. We also do not consider the coupling to the
phonons, which is another potential source of symmetry
breaking and also pre-emptive tetragonal to orthorhombic
transition.32

We next consider the role of the second hole band. This
band interacts with the electron band left out of the primary
SDW mixing. These two bands are less nested and the inter-
action must exceed a threshold for an additional SDW order
to appear. If this is the case and an additional SDW order is
strong enough, it gaps the remaining two FSs, and the system

FIG. 1. �Color online� Fermi surface of ferropnictides in the
unfolded BZ consisting of two hole pockets centered around the �
point and two electron pockets centered around �� ,0� and �0,��
points, respectively. The wave vectors Q1 and Q2 are two degener-
ate nesting wave vectors.
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becomes an insulator. This second �weaker� SDW OP has the
momentum �0,�� if the original SDW order was with �� ,0�
and vise versa. It then introduces �� 2 �or �� 1� which was set to
zero by the initial selection of �0,�� or �� ,0� order. We
show that this second-order parameter is directed orthogonal
to the primary one, i.e., �� 1 ·�� 2=0. The magnitude of the OP
at each Fe site is then the same but the OP is not ferromag-
netic along x or y direction, i.e., the resulting SDW order is
different from �0,�� or �� ,0�. The only way to preserve
�0,�� or �� ,0� order in the four-band model is to assume
that the interaction between the second hole FS and the elec-
tron FS left out in primary SDW selection is below the
threshold. Then �� 2 �or �� 1� remains zero and �0,�� or �� ,0�
order survives. A simple but important consequence of this
observation is that the four-band model with a stripe order
must remain a metal. Specifically, one hole and one electron
band are not involved in the SDW mixing and should be
observed in ARPES experiments exactly at the same posi-
tions as in the normal state: the hole band near �0,0� and the
electron band near �� ,�� in the folded BZ. This somewhat
unexpected result is another main conclusion of this paper.

Applying the results to the pnictides, where the interac-
tions are believed to be moderate, we show that the hole
band with a larger FS interacts more strongly with elliptic
electronic bands than the hole band with a smaller FS.
Hence, in our theory, the smaller hole FS stays intact below
a SDW transition, and the reconstruction of the fermionic
structure below TSDW involves the larger hole FS and one of
two electron FSs. Since the hole FS is a circle and the elec-
tron FS are ellipses, the two cross at four points when shifted
by, e.g., �0,��, and for moderately strong interactions SDW
gaps open up only around crossing points.33 In the folded BZ
this gives rise to two FS crossings near either �0,0� or �� ,��.
Adding the FSs which are not involved in the SDW mixing,
we find that there generally must be three FS crossings near
�0,0� or �� ,��—more than in the normal state.

Further, our conclusion that �0,�� SDW order in the four-
band model preserves metallic behavior even at strong cou-
pling implies that there is no continuous evolution between
our four-band model and J1-J2 model of localized spins, de-

spite that quantum fluctuations in J1-J-2 model select the
same �0,�� order. At a first glance, this is surprising as it is
well known that in the one-band Hubbard model, there is an
evolution from itinerant to localized behavior34 by which we
mean that, upon increasing U, a one-band system evolves
from an antiferromagnetic metal to an antiferromagnetic in-
sulator with the same �� ,�� magnetic order. To understand
why our four-band model is special, we considered a half-
filled t-t�-U Hubbard model on a square lattice with the hop-
ping t between nearest neighbors and hopping t� between
next-nearest neighbors along the diagonals. In the large U
limit, the model reduces to J1-J2 model with J1� t2 /U and
J2��t��2 /U. As small U, the model describes two hole bands
centered at �0,0� and �� ,��, and two electron bands centered
at �� ,0� and �0,��. At t=0, all four bands are identical �up
to an overall sign�, and all have an isotropic quadratic dis-
persion near the top of the hole bands and the bottom of the
electron bands. For t�0, electron bands become elliptical
near the bottom and the masses of the two hole bands be-
come different �i.e., one hole FS becomes larger and the
other becomes smaller�. This very much resembles the ge-
ometry of our four-band model, except that in t-t�-U model
the second hole band is located at �� ,�� see Fig. 3. We
analyzed t-t�-U model in the same way as the four-band
model and found that in t-t�-U model there is an evolution
from a metallic to an insulating behavior as U increases.
Namely, the state with �0,�� or �� ,0� stripe order is a metal
at small U and an insulator at large U.

The difference between our case and t-t�-U model can be
easily understood. If we apply the same logics as in our case,
i.e., consider the three-band model first, we find �0,�� SDW
order which mixes one hole and one electron FSs. The re-
maining electron band can again mix with the other hole
bands and create another SDW order, what eventually gaps
all four FSs. However, in t-t�-U model, the second hole FS is
located at �� ,�� rather than at the � point and the second
SDW OP has the same momentum �0,�� as the primary
SDW OP. As a result, the two OPs just add up and �0,��
order survives. From this perspective, the reason why �0,��
ordered state in the pnictides is a metal is the FS geometry:
the fact that both hole FSs are centered at the same � point.
Were they centered at �0,0� and �� ,�� the system would be a
�0,�� metal at weak coupling and �0,�� insulator, described
by J1-J2 model, at strong coupling.

A word of caution: while it is widely believed, based on
band-structure calculations, that both quasi-2D hole FSs in
the ferropnictides are centered at �0,0� point in both folded
and unfolded BZ, experimentally the location of hole pockets

(d)

(a) (b)

(c)

FIG. 2. �Color online� Various SDW spin configurations de-
scribed by �� 1eiQ1R+�� 2eiQ2R. For the model of Eq. �2�, only �� 1

2

+�� 2
2 is fixed. Panel �a� �� 1=0, panel �b� �� 2=0, panel �c� �� 1��� 2,

and panel �d� �� 1=�� 2.

FIG. 3. �Color online� Energy dispersions in the SDW state for
full nesting: �a� one-electron band and one hole band and �b� one-
electron band and two hole bands. Dashed lines in �a� are the dis-
persions without SDW order.
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is measured in the folded BZ only. Because �� ,�� point in
the unfolded BZ folds into �0,0�, the experiments cannot dis-
tinguish between the cases when both hole pockets are at
�0,0�, in the unfolded BZ, and when one hole pocket is at
�0,0� and another at �� ,��. Still, a good overall agreement
between band theory calculations and the data is a strong
indicator that the FS geometry predicted by band theory is
the correct one. We assume below that this is the case.

In the rest of the paper we discuss these issues in full
detail. The structure of the presentation is the following. In
Sec. II A we introduce three-band model and discuss SDW
ordering in general terms. In Sec. II B we consider the case
of circular electron pockets and only the interactions be-
tween hole and electron pockets. We show that, at this level,
there exists a degenerate manifold of SDW ordered states. In
Sec. II C we show that ellipticity of electron pockets and
interactions between them remove the degeneracy and select
a stripe SDW order already at the mean-field level. In Sec.
II C 3 we consider spin component of the interaction be-
tween electron pockets and show that it selects a different
state in which SDW order appears only at a half of Fe sites.

In Sec. III we add the second hole band and discuss a
potential SDW mixing between this band and the electron
band left out of SDW mixing in the three-band model. We
argue that �0,�� or �� ,0� order survives only if this addi-
tional SDW mixing does not happen, i.e., the interaction be-
tween these two bands is below the threshold. In Sec. III we
contrast this behavior with the one in a t-t�-U Hubbard
model with nearest and next-nearest neighbors. We show that
in this model the second hole FS is centered at �� ,�� �in the
unfolded zone� rather than at �0,0� and the secondary SDW
OP has the same momentum as the primary OP, i.e., the
stripe order is preserved. We show that �0,�� or �� ,0� state
in t-t�-U model can be either a metal or an insulator, de-
scribed at strong coupling by J1-J2 model. In Sec. IV we
consider electronic structure of the SDW phase with �0,��
order and compare our theoretical results with the experi-
ments. We argue that the agreement with ARPES is quite
good. We present our conclusions in Sec. V.

Our results are complimentary to earlier arguments as to
why SDW phase remains a metal. Ran et al.35 considered an
orbital model and argued that the SDW gap must at least
have nodes because SDW coupling vanishes along particular
directions in k space. Cvetkovic and Tesanovic10 and
Vorontsov et al.36 argued that a metal survives even for the
case of circular FSs, if SDW order is incommensurate. As we
said, we argue that the system described by four-band model
remains a metal even if the order is commensurate �0,�� or
�� ,0� and the interactions are angle independent. Our analy-
sis also serves as a justification to the works37,38 which dis-
cussed the consequences of the �� ,0� SDW order in itinerant
models without analyzing why this order is selected. Some
of our results are also consistent with the analysis of possible
magnetically ordered states in the two-orbital model by
Lorenzana et al.39 We also found, for a particular model, a
state with magnetic order residing only on one of the two
sublattices. Such state was identified as a possible candidate
in a generic Landau-theory analysis for a two-sublattice or-
der parameter.39

II. ITINERANT SDW ORDER IN THE THREE-BAND
MODEL

A. General consideration

Consider a model of interacting fermions with a circular
hole FS centered around � point �� band� and two elliptical
electron Fermi-surface pockets centered around ��� ,0� and
�0, ��� points in the unfolded BZ �� bands� �see Fig. 1�

H2 = �
p,	

�
p
�1�ip	

† �ip	 + 
p
�1�1p	

† �1p	 + 
p
�2�2p	

† �2p	� . �1�

Here 
p
�1 =− �2p2

2m1
+�, 
p

�1 =
�2px

2

2mx
+

�2py
2

2my
−�, and 
p

�2 =
�2px

2

2my
+

�2py
2

2mx

−� are the dispersions of hole and electron bands. The mo-
menta of � fermions are counted from �0,0�, the momenta of
�1 and �2 fermions are counted from �0,�� and �� ,0�, re-
spectively.

The interacting part of the Hamiltonian contains density-
density interactions involving � and � fermions �interactions
with small momentum transfer�, �� ,0�, �0,��, and �� ,��
scattering processes, and umklapp pair hopping terms.12

Consider first only the interactions between hole and electron
bands, which give rise to a SDW order. These are density-
density interaction between � and � fermions, and the pair
hopping term12

H4 = U1 � �1p3	
† � jp4	�

† � jp2	��1p1	

+
U3

2 � �� jp3	
† � jp4	�

† �1p2	��1p1	 + H.c.� . �2�

We neglect potential angular dependencies of U1 and U3
along the FSs.

Because U1 and U3 involve �1 and �2 fermions, we have
to introduce two SDW OPs �� 1�p��1p�

† �1p�	� ��	 with mo-
mentum Q1= �0,�� and �� 2�p��1p�

† �2p�	� ��	 with momen-
tum Q2= �� ,0�. Without loss of generality we can set �� 1

along z axis and �� 2 in the xz plane. In explicit form, we
introduce

�1
z = − USDW�

p
��1p↑

† �1p↑	 ,

�2
z�x� = − USDW�

p
��1p↑

† �2p↑�↓�	 , �3�

where USDW=U1+U3.

B. Degeneracy of the SDW order

Assume first that electron pockets are circular, i.e., mx

=my and 
p
�1 =
p

�2 =
p
�, i.e., m1=mx=my. In this situation, the

Hamiltonian, Eq. �2�, can be easily diagonalized by perform-
ing three subsequent Bogolyubov transformations. First

�2p↑ = �2pa cos � − �2pb sin � ,

�2p↓ = �2pa sin � + �2pb cos � �4�

with cos �=
�2

z

�2
, sin �=

�2
x

�2
, and �2=
��2

x�2+ ��2
z�2. This trans-

formation rotates the quantization axis of �� 2 and makes it
parallel to �� 1. Then
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�1p↑ = cap cos � − dap sin � ,

�2pa = cap sin � + dap cos � ,

�1p↓ = cbp cos � − dbp sin � ,

�2pb = cbp sin � + dbp cos � �5�

with cos �=
�1

z

� , sin �=
�2

� , and �=
��2�2+ ��1
z�2. This mixes

order parameters �1 and �2 into one, combined order param-
eter �. Once we are left with only one order parameter, bi-
linear in fermions, we can diagonalize the quadratic form by
a usual Bogolyubov rotation

�1p↑ = pap cos � + eap sin � ,

�1p↓ = pbp cos �̃ + epp sin �̃ �6�

and

cap = eap cos � − pap sin � ,

cbp = ebp cos �̃ − pbp sin �̃ , �7�

where �̃= �
2 +�, cos2 �, sin2 �= 1

2 �1�

p


�
p�2+�2 �, and 
p

= 1
2 �
p

�1 −
p
��. The resulting quadratic Hamiltonian becomes

H2
ef f = �

a,p

p

�dap
† dap + �

p
Ep�eap

† eap + pbp
† pbp

− ebp
† ebp − pap

† pap� , �8�

where Ep= �
�
p�2+ ���2. The self-consistent equation for
the gap reduces to

1 =
USDW

2N
�
p

1

�
p�2 + �2

. �9�

Two key observations follow from these results. First, self-
consistency equation Eq. �9� sets the value of the total order
parameter �� 1

2+�� 2
2 but does not specify what �� 1 and �� 2 are.

The implication is that, at this level, the OP manifold can be
viewed as a six-component vector �three components of �� 1

and three of �� 2�, SDW ordering is a spontaneous breaking of
O�6� symmetry, and an ordered state has five Goldstone
modes. The degenerate ground-state manifold is composed
of two-sublattice states with antiferromagnetic order along
diagonals; �0,�� or �� ,0� states, for which �� 1=0 or �� 2=0,
are just two of many possibilities �see Fig. 2�. Second, a
linear combination of original electronic operators described
by da,p decouples from the SDW procedure. Then, even in
case of perfect nesting, when 
p

�1 =−
p
�, the system still re-

mains a metal in the SDW phase—excitations described by
ea,p and pa,p operators become gapped but excitations de-
scribed by da,p operators remain gapless.

Note that the ground-state degeneracy is even larger than
in the J1-J2 model of localized spins—not only the angle
between the two sublattices can be arbitrary but also the
magnitudes of the ordered moments in the two sublattices
can be different. To confirm this result, we computed the

ground-state energy Egr in the mean-field approximation and
indeed found that it depends only on �� 1

2+�� 2
2. We also ex-

tended this analysis to include �-� interactions with momen-
tum transfer �0,�� and �� ,0� �U2 terms in the terminology
of Ref. 12� and still found the same degeneracy.

Note by passing that the momentum integration in the
self-consistency condition, Eq. �9� is not restricted to the FS,
and a finite SDW order parameter � appears even when FS
disappear. This is due to the fact that a particle-hole bubble
made out of � and � fermions actually behaves as a particle-
particle bubble because of sign difference in fermionic dis-
persions of � and � fermions. The consequence is that the
SDW ordered moment does not scale with the �small� sizes
of the hole and electrons FSs. In other words, SDW order is
due to dispersion nesting of � and � fermions but not due to
FS nesting.

C. Selection of the SDW order

1. Interaction between electron pockets

We now add the interactions between the two electron
pockets and verify whether they lift the degeneracy. These
interaction do not contribute to the quadratic form but they
do contribute to the � dependence of the ground-state en-
ergy. It has been argued,3 based on the transformation of the
underlying orbital model into a band model, that the interac-
tions between the two electron pockets are not particularly
small and must be included into the theory.

There are four possible �-� interactions:

H4
ex = U6 � �1p3	

† �2p4	�
† �2p2	��1p1	

+ U7 � �2p3	
† �1p4	�

† �2p2	��1p1	

+
U8

2 � ��2p3	
† �2p4	�

† �1p2	��1p1	 + H.c.�

+
U4

2 � �� �1p3	
† �1p4	�

† �1p2	��1p1	

+ �2p3	
† �2p4	�

† �2p2	��2p1	� . �10�

�we used the terminology consistent with Ref. 12�. It is natu-
ral to assume that all interactions are repulsive, i.e., all Ui
�0.

Applying the sequence of Bogolyubov transformations
and taking �¯ 	, we obtain the contribution to the ground-
state energy from various terms in Eq. �10�

U6 � �1p3	
† �2p4	�

† �2p2	��1p1	 → 2A2 ��� 1�2��� 2�2

�4 + ¯ ,

U7 � �2p3	
† �1p4	�

† �2p2	��1p1	

→ 2A2�2
��� 1 · �� 2�2

�4 −
��� 1�2��� 2�2

�4 � + ¯ ,

U8 � ��2p3	
† �2p4	�

† �1p2	��1p1	 + H.c.� → 4A2 ��� 1�2��� 2�2

�4 ,
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U4 � �� �1p3	
† �1p4	�

† �1p2	��1p1	 + �2p3	
† �2p4	�

† �2p2	��2p1	�
→ − 4A2 ��� 1�2��� 2�2

�4 , �11�

where dots stand for the terms which depend only on �2 and
do not break a degeneracy, and A= �c−d�, where c
= �cbp

† cbp	= �cap
† cap	= 1

2N�p�1−

p


�
p�2+�2 � and d�dbp
† dbp	

= �dap
† dap	= 1

2N�p�1−
Ep

�Ep� �. The quantity A is zero in the nor-
mal state but has a finite value in the SDW state. Combining
all contributions, we obtain

Egr
ex = 2A2��U6 + U8 − U7 − U4��

��� 1�2��� 2�2

�4 + 4A2U7
��� 1 · �� 2�2

�4 .

�12�

We see that Egr
ex depends on ��� 1�2��� 2�2 and on ��� 1 ·�� 2�2, i.e., it

is sensitive to both, relative values and relative directions of
�� 1 and �� 2. When all interactions are of equal strength, the
first term vanishes, and the last term favors �� 1��� 2. In this
situation, the O�6� degeneracy is broken, but only down to
O�3��O�2�, i.e., the magnitude of the order parameter at
each site is now the same because ��� 1+�� 2�2= ��� 1−�� 2�2, but
the angle between the directions of the SDW order in the two
sublattices �i.e., between �� 1+�� 2 and �� 1−�� 2� is still arbi-
trary. This is exactly the same situation as in the classical
J1-J2 model. However, once U6+U8−U7−U4 is nonzero, the
degeneracy is broken down to a conventional O�3� already at
the mean-field level. Because U4 is reduced and even
changes sign under the renormalization group �RG�,12 while
other Ui do not flow, the most likely situation is that U6
+U8−U7−U4�0, in which case Egr

ex is minimized when ei-
ther �� 1=0, or �� 2=0, i.e., SDW order is either �0,�� or
�� ,0�. This is exactly the same SDW order as observed in
the experiments. If U6+U8−U7−U4 was negative, Egr

ex would
be minimized when ��� 1�= ��� 2�, in which case the SDW OPs
of the two sublattices would align orthogonal to each other.
The spin configuration for such state is shown in Fig. 2�c�.
Such orthogonal spin configuration has been found in the
analysis of spin ordering in the two-orbital model.39

2. Deviations from perfect nesting

Consider next what happens when we also include into
consideration the fact that electronic pockets are actually el-
lipses rather than circles, i.e., the effective masses mx and my

are not equal, and 
k
�1�
k

�2. To continue with the analytical
analysis, we assume that the ellipticity is small, introduce
mx= �1+��m and my = �1−��m, where ��1, and compute the
correction to the ground-state energy to second order in �.
Performing the same set of transformations as before, we
find that, for a nonzero �, Eq. �8� has to be supplemented by

H4
�1� = 2��

p

px
2 − py

2

2m
�cos 2��cos2 �eap

† eap + sin2 �pap
† pap

− dap
† dap − sin � cos ��pap

† eap + H.c.��

+ sin 2��cos ��pap
† dap + H.c.� − sin ��pep

† dap + H.c.��� ,

�13�

where the angles � and � are defined in the same way as
before, and the overall factor of 2 accounts for spin degen-
eracy. For a perfect nesting ea�pa� states are all empty �oc-
cupied� and for small ��� ellipticity does not change this.

From Eq. �13� we obtain two contributions to Egr of order
�2. One comes from virtual transitions to nonoccupied states
and is negative. Another comes from the change in the dis-
persion of the ungapped 
k

�1 in the presence of ellipticity and
is positive. The negative contribution comes from nondiago-
nal terms in Eq. �13� taken to second order. Applying a stan-
dard second-order quantum-mechanical perturbation theory
we obtain

Egr
a,ellipt = − �2 sin2 2�

� �
p
� px

2 − py
2

2m
�2 �2

2Ep
� 1

�Ep + �
p��2 −
1

�2Ep�2�
+ ¯ , �14�

where 
p and Ep are defined after Eq. �8�, and dots stand for
the terms which do not depend on � and do not break the
degeneracy. We remind that cos �= ��� 1� /� and sin �

= ��� 2� /� so that sin2�2��=4��� 1�2��� 2�2 /�4. Replacing the sum
in Eq. �14� by the integral and rescaling, we obtain for the
energy per unit area

Egr
a,ellipt = − �2 sin2 2�

m�2

16�
F��

�
� , �15�

where

F�x� =
2

x2�
−x

� �y + x�2dy

y2 + 1

� 1

�
y2 + 1 + �y��2
−

1

4�y2 + 1�� .

�16�

At large x, i.e., at small � /�, expected within the itinerant
description, F�x→���1, and Egr

a,ellipt becomes

Egr
a,ellipt = − �2 sin2 2�

m�2

16�
. �17�

Another contribution to Egr comes from the diagonal term in
Eq. �13� and is related to �-induced change in the dispersion
of d fermions, which are not gapped by SDW. Adding
−��px

2− py
2� /m term from Eq. �13� to the dispersion of a d

fermion and evaluating the energy of the occupied states, we
obtain after simple algebra that a linear term in � is canceled
out but �2 term is finite and yields

Egr
b,ellipt = + �2 sin2 2�

m�2

8�
. �18�

Comparing the two contributions, we find that Egr
b,ellipt is two

times larger than Egr
a,ellipt. Adding the two terms and express-

ing sin2 2� in terms of �1 and �2, we obtain

Egr
ellipt = C��� 1�2��� 2�2, C = �2 m�2

4��4 . �19�

We see that C is positive, i.e., the correction due to ellipticity
of electron pockets breaks the degeneracy and selects either
�0,�� or �� ,0� state. This is again the same selection as one
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needs for consistency with the experiments. We found it
quite remarkable that ellipticity introduces effective interac-
tion between two SDW OPs which, for ���, leads to the
same selection of the ground-state SDW order as the direct
interaction between the two electron pockets.

For larger � /�, F�x� increases, eventually to F�x�1�
= �1 /2��0.25 /x�2, and Egr

a,ellipt becomes larger than Egr
b,ellipt.

The sign change in Egr
ellipt occurs, however, at quite large �

�� /2 which very likely is not realized in the ferropnictides.
The issue we did not address in this work is how the

angular dependence of the interaction contributes to the se-
lection of the SDW order. The angular dependence of in-
trapocket and interpocket interactions originates from the
fact that fermionic states at different parts of hole and elec-
tron FSs represent different orbital configurations in the un-
derlying orbital model. Once one moves from orbital to band
representation, fermionic excitations become isotropic along
the FS, and the information about the orbital structure is
passed to interactions in the form of angular dependence.
The angular dependence of the interaction was argued to be
essential for the understanding of an extended s-wave super-
conductivity with nodes along the electron FSs �Ref. 3� but
to what extent it is relevant to magnetism is not yet known.

3. Selection of the SDW order in the itinerant J1-J2 model

We next show that the selection of the �0,�� and �� ,0�
states in the itinerant model occurs only if fermion-fermion
interactions are conventional charge-charge interactions
rather than spin-spin interactions �the vertices contain spin �
functions rather than 	 matrices�. Briefly, we consider the
itinerant J1-J2 model with spin-spin interaction and show
that this model also possesses O�6� symmetry at the mean-
field level but the magnetic order selected by quartic terms is
different from �0,��.

The itinerant J1-J2 model is described by

HJ1-J2 = � S��p�S��− p� � �J1�cos px + cos py�

+�2J2 cos px cos py�� , �20�

where S��p�= �1 /2��p1
ap1�

† 	� ��ap1+p�, where a are fermionic
operators which can be either holes, when p1 is close to
�0,0�, or electrons, when p1 is close to �0,�� or �� ,0�. The
kinetic-energy term is the same as in Eq. �1�. To avoid mis-
understanding, we emphasize that the itinerant J1-J2 model
considered here is not the model of localized spins, even
when J1,2 is large compared to the Fermi energy. In particu-
lar, there is no constraint of no-double occupancy, like the
one in t-J model for the cuprates. We consider the localized
J1-J2 model later in the paper.

Relevant momenta p in Eq. �20� are near �0,0�, �0,��,
�� ,0�, and �� ,��. Equation �2� is reproduced if we consider
the contributions with p near �0,0�, �0,��, and �� ,0�. One
can easily verify that each of these terms has contributions
which mix � and � operators. Expressing S in terms of bi-
linear combinations of fermions and using the spin algebra
we obtain that for itinerant J1-J2 model U3=3J2 and U1
=J2-J1, such that, for this model, USDW=U1+U3=JSDW
=4J2-J1. We then introduce the same SDW vector OPs

as in Eq. �3�: �1
z =−JSDW�p��1p↑

† �1p↑	 and �2
z�x�

=−JSDW�p��1p↑
† �2p↑�↓�	. Performing the same mean-field de-

coupling of the four-fermion terms as in the previous section,
we find that self-consistency equations for �� 1 and �� 2 are
again identical and only specify the value of �2= ��� 1�2

+ ��� 2�2

1 =
JSDW

2N
�
p

1

�
p�2 + �2

. �21�

The solution for � exists for J2�J1 /4, i.e., for large J2 SDW
order is antiferromagnetic along the diagonals. The condition
J2�J1 /4 is similar to J2�J1 /2 for a classical J1-J2 model of
localized spins �the conditions in itinerant and localized
models do not have to be exactly the same, indeed�.

The degeneracy between different SDW states with the
same �2 is again broken once we include interactions be-
tween electron pockets. Such interactions are generated by J1
and J2 terms taken at momenta p= �0,0� and �� ,��. One can
easily verify that these the �� ,�� term mixes the two elec-
tronic operators and contribute terms equivalent to U6, U7,
and U8 terms in Eq. �10� while from �0,0� term one obtains
contributions equivalent to U6 and U4 terms in Eq. �10�.

Re-expressing �S��p�S��−p� in terms of fermions we obtain
the quartic interaction between �1 and �2 fermions in the
same form as in Eq. �11� with the coefficients

U6
s = J1 − 3J2, U7

s = − J1 − 3J2,

U8
s = 3�J1 − J2�, U4

s = − 3�J1 + J2� . �22�

Substituting these coefficients into Eq. �12�, we obtain

Egr
J1-J2 = 4A2�4J1

��� 1�2��� 2�2

�4 − �J1 + 3J2�
��� 1 · �� 2�2

�4 � ,

�23�

where A�0 is defined after Eq. �12�. Comparing this form
with Eq. �12� we see that now the prefactor for ��� 1 ·�� 2�2

term is negative, i.e., the energy is lowered when �� 1 and �� 2

are parallel. The terms ��� 1�2��� 2�2 and ��� 1 ·�� 2�2 are then
equal, and from Eq. �23� we obtain

Egr
J1-J2 = − 12A2�J2-J1�

��� 1�2��� 2�2

�4 . �24�

We see that the state with �� 1=0 or �� 2=0, which has �0,��
or �� ,0� order, is only favored in the range J1 /4�J2�J1.
For larger J2, the energy is minimized when �� 1= ��� 2. The
corresponding SDW state has antiferromagnetic order for
spins in one sublattice but no SDW order for spins in the
other sublattice �see Fig. 2�d��. Such state has been identified
as one of possible candidates for the magnetic ground state
in the generic analysis of the Landau theory for a two-
component order parameter.39 We see therefore that, when J2
term dominates, spin-spin interaction between the two elec-
tron bands selects different SDW order from the case when
the interaction is in the charge channel.
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III. SDW ORDER IN FOUR-BAND MODEL

So far we found that the stripe �� ,0� or �0,�� order is
selected in the three-band model �one hole and two electron
FSs� with conventional charge interactions. We now add the
second hole pocket and check how its inclusion affects the
SDW order.

As we said in the Introduction, the second hole FS is less
coupled to electron FSs than the one that we already in-
cluded into the three-band model. This is due to a combina-
tion of the two factors: the difference in the interactions
USDW and the difference in the degree of the overlap with the
elliptic electron FSs. We consider both factors.

To begin, consider a model of two circular hole FSs and
two circular electron FSs. Let’s assume that all FSs are of the
same size but that there are two different SDW interactions
between hole and electron bands—USDW

�1� for one hole band
and USDW

�2� for the other. We introduce four SDW OPs: �� 11,
�� 12, �� 21, and �� 22, of which �� 11 and �� 21 are with momentum
Q1, and �� 12 and �� 22 are with momentum Q2. The OPs �� 11

and �� 12 involve fermions from the first hole band while �� 21,
and �� 22 involve fermions from the second hole band. With-
out loss of generality, �� 11 can be directed along z axis, and
�� 12 in the xz plane, but the directions of �� 21 and �� 22 can be
arbitrary in 3D space. To simplify the discussion, we assume
that the SDW configuration is coplanar, and set �� 11 and �� 21

to be along z axis, and �� 12 and �� 22 to be along x axis. In
explicit form, we then have, by analogy with Eq. �3�

�� 11 = �1
z = − USDW

�1� �
p

��1p↑
† �1p↑	 ,

�� 12 = �1
x = − USDW

�1� �
p

��1p↑
† �2p↓	 ,

�� 21 = �2
z = − USDW

�2� �
p

��2p↑
† �1p↑	 ,

�� 22 = �2
x = − USDW

�2� �
p

��2p↑
† �2p↓	 . �25�

From now on the subindices 1 and 2 indicate SDW OPs
associated with one or the other hole bands.

As in previous section, we first consider only the interac-
tions between hole and electron states which contribute to
the SDW order �U1 and U3 terms�. Decoupling four-fermion
terms using Eq. �25�, we obtain the quadratic Hamiltonian in
the form Hef f

�2� =Hkin+H�1�
�2� +�2�

�2� , where

Hkin = �
p,	,i=1,2


p��ip	
† �ip	 − �ip	

† �ip	� , �26�

H�1�
�2� = − �

p
��1p↑

† ��1
z�1p↑ + �2

x�2p↓�

− �1p↓
† ��1

z�1p↓ − �2
x�2p↑�� + H.c.,

H�2�
�2� = − �

p
��2p↑

† ��3
z�1p↑ + �4

x�2p↓�

− �2p↓
† ��3

z�1p↓ − �4
x�2p↑�� + H.c. �27�

The part involving �1 hole band and �1
z and �1

x can be di-
agonalized in the same way as for the three-band model, by
introducing cos �=�1

z /�1 and sin �=�1
x /�1, where �1

=
��1
z�2+ ��1

x�2 and rotating �1,2 into

�1p↓ = cbp cos � − dbp sin � ,

�2p↓ = cap sin � + dap cos � ,

�1p↑ = cap cos � − dap sin � ,

�2p↑ = − cbp sin � − dbp cos � . �28�

Substituting this into Eq. �26� we obtain

H�1�
�2� = − �1�

p
��1p↑

† cap − �1p↓
† cbp� �29�

and Hkin=H��1,c�
kin +H��2,d�

kin , where

H��1,c�
kin = �

p

p��1p↑

† �1p↑ + �1p↓
† �1p↓ − cap

† cap − cbp
† cbp� ,

�30�

H��2,d�
kin = �

p

p��2p↑

† �2p↑ + �2p↓
† �2p↓ − dap

† dap − dbp
† dbp� .

�31�

The part H��1,c�
kin +H�1�

�2� involves hole �1 operators and elec-
tron ca,b operators

H��1,c�
kin + H�1�

�2� = �
p


p��1p↑
† �1p↑ + �1p↓

† �1p↓ − cap
† cap − cbp

† cbp�

− �1�
p

��1p↑
† cap − �1p↓

† cbp� . �32�

Equation �32� can be diagonalized by the same transforma-
tion as in Eqs. �6� and �7�

�1p↑ = pap cos � + eap sin � ,

cap = eap cos � − pap sin � ,

�1p↓ = pbp cos �̃ + ebp sin �̃ ,

cbp = ebp cos �̃ − pbp sin �̃ , �33�

where, as before, �̃= �
2 +� and cos2 �, sin2 �

= 1
2 �1�


p


�
p�2+�1
2 �. Substituting, we obtain

H��1,c�
kin + H�1�

�2� = �
p

E1,p�eap
† eap + pbp

† pbp − ebp
† ebp − pap

† pap� ,

�34�

where E1,p= �
�
p�2+�1
2. This result is similar to Eq. �8�.

The self-consistent equation for the gap �1 is
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1 =
USDW

�1�

2N
�
p

1


�
p�2 + �1
2

. �35�

The remaining part of the Hamiltonian involves holes from
�2 band and reduces to

H��2,d�
kin + H�2�

�2� = �
p


p��2p↑
† �2p↑ + �2p↓

† �2p↓ − dap
† dap

− dbp
† dbp� − �2��2p↑

† �ca,p cos��̃ − ��

+ da,p sin��̃ − ��� − �2p↓
† �ca,p cos��̃ − ��

+ da,p sin��̃ − ���� , �36�

where we introduced cos �̃=�2
z /�2, sin �̃=�2

x /�2, and �2

=
��2
z�2+ ��2

x�2.
This part of the Hamiltonian decouples from the one

which we already diagonalized if we eliminate the terms

with c operators. This will be the case if we choose �̃
=� /2+�. Then Eq. �36� becomes the quadratic form of hole
�2 operators and electron da,b operators neither of which is
present in the quadratic form of Eq. �32�. Diagonalizing the
quadratic form in Eq. �36�, we obtain, in terms of new op-
erators ẽa,b and p̃a,b

H��2,d�
kin + H�2�

�2� = �
p

E2,p�ẽap
† ẽap + p̃bp

† p̃bp − ẽbp
† ẽbp − p̃ap

† p̃ap� ,

�37�

where E2,p= �
�
p�2+�2
2, The self-consistent equation for

the gap �2 is

1 =
USDW

�2�

2N
�
p

1


�
p�2 + �2
2

. �38�

We see that, by choosing �̃=� /2−�, we decoupled the qua-
dratic form into two parts, one for �1, another for �2. One
can easily check that for both parts it is energetically favor-
able to have a state with nonzero � once self-consistent
equations for �1,2 have solutions. This implies that the en-
ergy is further reduced if, in addition to creating �1

z

=�1 cos � and �1
x =�1 sin �, one also creates �2

z =−�2 sin �
and �2

x =�2 cos �. Furthermore, for equal-size circular FSs,
the solutions for �1 and �2 exist for any USDW

�1� and USDW
�2� .

The resulting fermionic excitations are fully gapped, i.e.,
within four-band model of equal-size circular hole and elec-
tron pockets, an SDW state is an insulator.

We now verify whether such insulating state is consistent
with the observed �0,�� or �� ,0� order. Because the angle �
disappears from the quadratic forms in Eq. �32� and �36� �for

�̃=� /2−��, the ground state is again degenerate. The degen-
erate SDW OP manifold is given by

S��R�  n�z��1 cos � − �2 sin ��eiQ1R

+ n�x��1 sin � + �2 cos ��eiQ2R. �39�

This degenerate set does contain �0,�� and �� ,0� states with
only one ordering vector �either Q1 or Q2�. These states are
obtained if we set tan �=�1 /�2 or tan �=−�2 /�1. The issue

then is whether such states are selected by other interactions
in the same spirit as �0,�� or �� ,0� orders were selected in
the three-band model. We argue that they are not. The argu-
ment is that �0,�� and �� ,0� ordered states in the four-band
model are obtained by choosing � such that �� 1 and �� 2 have
components with both momenta, Q1 and Q2. The total spin
component with either Q1 or Q2 vanishes because of cancel-
lation between �1 and �2 components. Indeed, for USDW

�2�

�USDW
�1� � is close to zero or to � /2 but it is not equal to

either of these values. Meanwhile, when we considered lift-
ing of the degeneracy in the three-band model, we found that
the interactions between �1 and �2 electrons and the elliptic-
ity give rise to the � dependence of Egr in the form Egr���
=E0+E1 sin2�2�� such that Egr��� has minima at � exactly
equal to 0 or to � /2. To verify what happens in the four-band
model, we extended those calculations to the case when
USDW

�2� is nonzero and analyzed the form of Egr��� perturba-
tively in USDW

�2� /USDW
�1� . We skip the details of the calculations

as they are similar to the ones for the three-band model. We
found that the minima in Egr��� do not shift from �=0 and
�=� /2, at least at small USDW

�2� /USDW
�1� . The consequence is

that, for the four-band model, interactions which break the
degeneracy of SDW manifold favor the states which are not
�0,�� or �� ,0� states. For example, when �=0, S��R�
�1n�ze

iQ1R+�2n�xe
iQ2R. Such SDW state is a two-sublattice

structure with equal magnitudes of the order parameters on
the two sublattices but with a noncollinear spin order.

The outcome of this study is that �0,�� or �� ,0� order
can only be preserved if �2 is strictly zero, i.e., the second
hole band is not involved in the SDW mixing. Only then
interactions and ellipticity select �0,�� or �� ,0� states. Oth-
erwise, the order necessary has both Q1 and Q2 components
and the SDW OP has modulations along both x and y direc-
tions.

This observation has an implication for the electronic
structure. When �2=0, one hole band and one electron band
are not involved in the SDW mixing, i.e., the system remains
a metal even when SDW mixing of the other two bands is
strong. In other words, �0,�� and �� ,0� SDW order neces-
sary involves only one of two hole bands and only one of the
two electron bands. The other hole and electron bands re-
main intact.

As we said, for equal-size circular hole and electron pock-
ets, there is a perfect nesting between both primary and sec-
ondary pairs of hole and electron states, and �2 is nonzero
for any nonzero USDW

�2� . This is, however, not the case when
the two hole FSs are circles of unequal size and the two
electron FSs are ellipses. In this situation, redoing the same
calculations as above we obtain in general four different
SDW bands described by

HSDW = �
a,b

�
p

E1,2p�ea,bp
† ea,bp + pb,ap

† pb,ap�

+ E3,4p�ea,bp
† ea,bp + pb,ap

† pb,ap� . �40�

Here
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E1,2p =
1

2
�
p

�1 + 
̃p� �
1

2

�
p

�1 − 
̃p�2 + 4��1�2 �41�

and

E3,4p =
1

2
�
p

�2 + 
̃̃p� �
1

2

�
p

�2 − 
̃̃p�2 + 4��2�2, �42�

where 
̃p=
p
�1 cos2 �+
p

�2 sin2 � and 
̃̃p=
p
�2 cos2 �

+
p
�1 sin2 �. The self-consistent equations for the two gaps

are

1 = USDW
�1� �

p

n�E1p� − n�E2p�

�
k

�1 − 
̃k�2 + 4��1�2
, �43�

1 = USDW
�2� �

p

n�E3p� − n�E4p�

�
k

�2 − 
̃̃k�2 + 4��2�2
. �44�

Analyzing these equations, we found that, for a nonperfect
nesting, SDW magnetism is a threshold phenomenon, i.e., to
obtain a nonzero �1 and �2, the interactions USDW must ex-
ceed the thresholds. We found that a hole band with a heavier
mass, e.g., with a larger FS, is more strongly coupled to
electron bands. This band then plays the role of the �1 band
in our theory. Once the corresponding USDW

�1� exceeds the
threshold value Ucr

�1�, the system develops an SDW order
��1�0� This order, as we know, is a stripe �0,�� or �� ,0�
order. For the smaller-size hole band ��2 band in our termi-
nology�, SDW order with �2�0 emerges only when USDW

�2�

exceeds a larger threshold Ucr
�2��Ucr

�1�. Once this happens,
SDW order acquires both Q1 and Q2 components. This is
illustrated in Figs. 4�a� and 4�b�. We see therefore that the

regime consistent with the experiments is USDW
�1� �Ucr

�1� and
USDW

�2� �Ucr
�2�. This regime is quite realistic given that there is

quite sizable difference between the areas of the two hole
pockets.

t-t�-U model

In simple terms, our result that the stripe order is only
consistent with �1�0, �2=0 is ultimately related to the ge-
ometry of the FS, namely, to the fact that both hole FSs are
located around the � point. Indeed, suppose that one hole
and one electron FSs are mixed into an SDW state with the
momenta between these FSs �say �Q1= �0,���. For strong
interaction, the SDW excitations are gapped and effectively
decouple from the other hole and electron bands. These two
bands can also mix into an SDW state, however, because the
second hole band is centered at �0,0�, it is separated from the
second electron band by Q2= �� ,0�, i.e., the second SDW
order necessary has momentum �� ,0�, and the stripe order
gets broken.

The SDW order would be different if the second FS was
centered at �� ,�� because then the remaining hole and elec-
tron bands would be separated by the same Q as the first pair
of bands, and the stripe configuration would not be broken
by the emergence of the second SDW order. This is illus-
trated in Figs. 4�c� and 4�d�.

Such FS geometry is realized in the half-filled t-t�-U
model described by

H = t �
i,�1	

ci	
† ci+�1	 + t� �

i,�2	

ci	
† ci+�2	 + U�

i

ni↑ni↓, �45�

where �1 and �1 are distances to nearest and next-nearest
neighbors, and nia=cia

† cia. In momentum space, the disper-
sion 
p=2t�cos px+cos py�+4t� cos px cos py −� has
maxima at �0,0� and �� ,�� and isotropic quadratic holelike
dispersion around these points �with nonequal masses near
�0,0� and �� ,��, when t�0�, and minima at �0,�� and
�� ,0� and elliptical electronlike dispersion near these points.
We illustrate this in Fig. 5. Such band structure is topologi-
cally equivalent to the one shown in Fig. 4�c�.

At large U, the t-t�-U model reduces by standard manipu-
lations to the J1-J2 Heisenberg spin model. The electronic
states in this model are all gapped, and the SDW OP is de-
generate at the mean-field level. We analyzed SDW order in
the t-t�-U model for arbitrary U within the same computa-
tional scheme as before and found that �0,�� and �� ,0�
states minimize the energy at the mean-field level because
both �� 1 and �� 2 appear with the same momentum.

It is instructive to consider the discrepancy between our
four-band model and t-t�-U model is some more detail. We
remind that in our model, ellipticity of electron pockets and
interactions between them select �0,�� and �� ,0� states al-
ready at the mean-field level. We show below that in t-t�-U
model there is no selection of a particular SDW order at the
mean-field level even when t�0 and electron dispersion is
elliptical. In this situation, �0,�� and �� ,0� states remain
degenerate with infinite number of other two-sublattice
states. Beyond mean-field level, quantum fluctuations select
�0,�� or �� ,0� order in the J1-J2 model. We haven’t check

FIG. 4. �Color online� The changes to the magnetic structure
introduced by the weak SDW coupling �� 2 between the second hole
band and the electron bands. Panels �a� and �b� are for the FS
topology of the pnictides, panels �c� and �d� are for the FS topology
of t�-t model for t� t�.
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the selection of the SDW order at smaller U but it is likely
that �0,�� and �� ,0� states are selected for all values of U.

To demonstrate that mean-field SDW OP in t-t-U
model remains degenerate, consider this model at small t
and introduce two SDW order parameters �� 1

=−�U /2N��k�ck,�
† 	��ck+Q1,�	 with momentum Q1 and �� 2

=−�U /2N��k�ck,�
† 	��ck+Q2,�	 with momentum Q2. We intro-

duce four fermionic operators with momenta near �0,0�,
�0,��, �� ,0�, and �� ,��, and re-express t-t�-U model as the
model of holes and electrons. We skip computational details,
which are not different from what we presented in previous
sections and only cite the results. The extra terms in the
quadratic form come from the interactions between holes and
electrons. For t=0, all four dispersions are equal �up to the
overall sign�, and the Hamiltonian is diagonalized in the
same way as in Sec. II B. Not surprising, the ground-state
energy depends only on ��1�2+ ��2�2, i.e., there exists a de-
generate manifold of SDW OPs.

Consider next the effect of the interactions between the
electron bands. There are four effective electron-electron
interactions—the analogs of U6, U7, U8, and U4 in Eq. �10�.
They all originate from the same U term and have the same
prefactors. According to Eq. �12�, the extra term in the
ground-state energy from electron-electron interaction only
has ��� 1 ·�� 2�2 part

Egr
ex = 4A2U

��� 1 · �� 2�2

�4 . �46�

This term orders �� 1 and �� 2 perpendicular to each other, what
makes the magnitudes of the two sublattice OPs �� 1+�� 2 and
�� 1−�� 2 equal. But in the absence of ��1

��2 · ��2
��2 term, the

angle between the two sublattices remains arbitrary.
Consider next the effect of ellipticity of electron pockets.

In our model, we remind, ellipticity gave rise to two contri-
butions to Egr, both scale as ��1

��2 · ��2
��2. The two contribu-

tions were of opposite sign but were not equal. In t-t�-U

model, the situation is very similar—there are again two con-
tributions to Egr: one is the second-order contribution from
nondiagonal terms in the Hamiltonian, induced by t, another
comes from the change in the dispersion of the diagonal
terms. The contribution from nondiagonal terms is given by

Egr
a,ellipt = 8t2 ��1

��2��2
��2

�4 � �
p

�cos2 px + cos2 py��2

��2 + 16�t��2cos2 px cos2 py�3/2

+ ¯ , �47�

where, as before, the dots stand for the terms which depend
only on �. The contribution from the change in the disper-
sion of the diagonal terms in the Hamiltonian is

Egr
b,ellipt = 2�

p
�
c1 + 
c2 + 
 fa + 
 fb −
�
c1 + 
 fa

2
�2

+ �2

−
�
c2 + 
 fb

2
�2

+ �2� , �48�

where


c1 = 4t� cos px cos py + 2t�cos px + cos py� ,


c1 = 4t� cos px cos py − 2t�cos px + cos py� ,


 fa = − 4t� cos px cos py + 2t�cos px + cos py���� 1
2 − �� 2

2

�2 � ,


 fb = − 4t� cos px cos py − 2t�cos px + cos py���� 1
2 − �� 2

2

�2 � .

�49�

Substituting these energies into Eq. �48� and expanding in t,
we find

Egr
b,ellipt = − 8t2 ��1

��2��2
��2

�4 ,

�
p

�cos2 px + cos2 py��2

��2 + 16�t��2cos2 px cos2 py�3/2 + ¯ . �50�

Comparing Eqs. �47� and �50�, we find that Egr
a,ellipt+Egr

b,ellipt

=0, i.e., ellipticity of electron bands in t-t�-U model does not
give rise to a selection of a particular SDW OP from the
degenerate manifold. This result very likely holds for arbi-
trary t / t�, as long as the ground-state manifold consists of
states with antiferromagnetic order along the diagonals.

IV. ELECTRONIC STRUCTURE OF THE SDW
STATE

As we said earlier, when all four Fermi surfaces are
circles of equal size, all four Fermi surfaces are mixed by the
SDW and are gapped. However, as soon as the two hole
pockets become nonequal, there is a range of the interactions
when one hole pocket and one of the two electron pockets

FIG. 5. �Color online� The FS for the tight-binding model 
p
=4t� cos px cos py +2t�cos px+cos py� for t=0 �squares� and t
=0.5t� �curves�. h and e refer to the hole and electron states occu-
pying the corresponding parts of the BZ. Observe that the hole
bands are now centered at �0,0� and �� ,��.
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are mixed by SDW but the other hole and electron pockets
remain intact. As a consequence, in the folded BZ, to which
the experimental data refer to, the electronic structure con-
tains one hole and one electron band mixed by SDW order
and visible both near �0,0� and �� ,��, one hole band visible
only near �0,0�, and one electron band visible only near
�� ,��. The only effect of SDW ordering on the nonmixed
excitations is the � dependence of the intensity via coher-
ence factors. Besides, for moderately strong interactions, as
in the pnictides, �1 is not too large, and the SDW-mixed
dispersions form the new FSs.33 The net result is the pres-
ence of three bands near the � point, one of which �the hole
band� is not modified by SDW, and another three bands close
to the �� ,�� point, one of which �the electron band� is not
modified by SDW �see Figs. 6�a� and 6�b��.

The spectral functions �iIm Gi are peaked at quasiparticle
energies but are also sensitive, via the SDW coherence fac-
tors, to the interplay between the effective masses of the bare
hole and electron dispersions. For example, for two equiva-
lent hole pockets �m1=m2� and mx�m1=my, the spectral
weight of ARPES intensity �inF�Eki�� Im Gi �nF�E� is a
Fermi function�, which we plot in Figs. 6�e� and 6�f�, is the
largest for two holelike bands centered around � point, and
for one electron band and hole “half bands” �hole blades�
around �� ,�� point. This theoretical ARPES intensity is
quite consistent with the experimental data from Refs.
25–27: the experiments also show two hole dispersions near
� point, and one electron band and two hole half bands near
�� ,��. There is some evidence26 of the third hole dispersion
near �0,0� but this one likely emerges from the fifth band
which we did not consider here.

Our results are also consistent with recent observations of
“anisotropic Dirac cones.”40,41 Indeed, the bands mixed in
the SDW state form small hole pockets near both � and M

points of the BZ, and the dispersion around these pockets is
almost linear close to the Fermi level and also anisotropic
between kx and ky due to initial anisotropy of the elliptic
band involved in the SDW mixing. However, despite of a
visual similarity with the Dirac cone, the dispersion is still
quadratic near the top of the hole band. There is also an
“accidental” Dirac cone in Fig. 6 near the � point, at a mo-
mentum where the dispersion of the SDW-mixed band inter-
sects with that of the hole band which does not participate in
the SDW mixing. This intersection need not to be at the FS
but occurs close to the FS for the parameters chosen in Fig.
6.

In Fig. 6 we assumed that a particular SDW order ��0,��
in that figure� is the same in the whole sample. It is quite
possible, though, that the system has domains with �� ,0�
and �0,�� orders. This idea has been recently put forward in
Ref. 28. In Fig. 7 we show the dispersions, the spectral func-
tions, and the ARPES intensities for a multidomain sample,
assuming equal distributions of the domains with �� ,0� and
�0,�� orders. Comparing Figs. 6 and 7, we clearly see that
main effect of averaging over two different SDW orders is
the appearance of an additional electron dispersion near the
M point. This second electron dispersion is consistent with
recent ARPES measurements of the electronic structure in
BaFe2As2 by Shen and co-workers.28

V. SUMMARY

To summarize, in this paper we analyzed SDW order in
the itinerant model for Fe pnictides. We considered a model
consisting of two hole bands centered at �0,0� and two elec-
tron bands centered at �0,�� and �� ,0� points in the un-
folded BZ �in the folded zone, this corresponds to two hole
bands centered at �0,0� and two electron bands centered at
�� ,���.

We assumed that one hole band is more strongly coupled
to electron bands and considered first a three-band model
consisting of one hole and two electron bands. We found that
SDW order in this model is highly degenerate for the case of
a perfect nesting and if we restrict with only the interactions
between holes and electrons which give rise to a SDW insta-

FIG. 6. �Color online� Calculated image of the electronic struc-
ture in the folded BZ in the SDW phase. Left panel—near �
= �0,0� and right panel—near M = �� ,��. In figures �a� and �b� we
show the dispersion, in figures �c� and �d� the spectral function
Im G�k ,��=�iIm Gi, and in figures �e� and �f� ARPES intensity,
i.e., the product Im G�k ,���nf�Ek�. The direction of momenta in
all figures is along kx=ky in the folded BZ. We directed SDW order
parameter along z axis and set �1

z �0, �2=�3=�4=0 ��0,�� order�.
For definiteness we set �1

z =� /4, �1= �3 /2��, �2= �3 /2��, and
m1=m2=my =2mx=1. For numerical purposes we added the small
damping constant �=0.04�.

FIG. 7. �Color online� Same as in Fig. 6 but for a multidomain
sample with equal distribution of the domains with �� ,0� and �0,��
SDW orders.
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bility. The degeneracy of the SDW order parameter is due to
the fact that the energy gain to create SDW order parameters
with momentum Q1= �0,�� or Q2= �� ,0� is the same. The
order-parameter manifold consists of states with a perfect
antiferromagnetic order along diagonals but with nonequal
values and arbitrary directions of the OPs at nearest neigh-
bors.

We demonstrated that the degeneracy is broken once we
include into consideration interactions between two electron
pockets and ellipticity of these pockets. Both the interactions
and the ellipticity select �0,�� or �� ,0� stripe phases with
only one ordering momenta, either Q1 or Q2. These stripe-
ordered states are in agreement with the experiments on
FeAs-based pnictides. The selection of either �0,�� or �� ,0�
order leaves one electron FS intact and the system remains a
metal even when SDW order is strong, and the two bands
involved in the SDW mixing are fully gapped.

We argued that the selection of stripe states only occurs
when the interaction between electron pockets is in the
charge channel. We considered, as an example, the model
with the interaction in the spin channel and showed that there
electron-electron interactions select a different state.

We next added the second hole band and argued that it
mixes with the electron band which was left out of the SDW
mixing in the three-band model, once the corresponding cou-
pling exceeds the critical value. We found, however, that this
second SDW order necessary gives rise to a nonstripe spin
configuration in which both ordering momenta Q1 or Q2 are
present. The stripe �0,�� or �� ,0� order is therefore pre-
served only if the interaction involving the second hole band
is below the threshold and the second SDW order does not
develop.

This in turn implies that, if the SDW order is �0,�� or
�� ,0�, as the experiments indicate, only one hole and one
electron FSs are involved in the SDW mixing. Other two
bands �one hole band and one electron band� are not in-
volved and remain the same as in the normal state. As a
result, the system remain a metal for any coupling strength.

We argued that this peculiar requirement is related to the
fact that both hole FSs are centered at �0,0�. If one of two
hole FSs was instead centered at �� ,��, the second SDW
order would have the same momentum as the first one �either
Q1 or Q2� and the stripe order would survive. To illustrate
this point, we considered a half-filled t-t�-U model in which
the two hole bands are centered at �0,0� and �� ,��. In the

large U limit, the model reduces to J1-J2 model of localized
spins. We argued that, in this model, the degeneracy of the
found state SDW order-parameter manifold is not broken by
either ellipticity or electron-electron interactions, and the de-
generate manifold includes �0,�� and �� ,0� states even
when all four bands are involved in the SDW mixing. The
degeneracy is broken by fluctuations beyond mean field,
which likely select the stripe order at any U. Because all four
bands are involved, the stripe-ordered state in the t-t�-U
model, it is a metal at small U and an insulator at large U.

We analyzed the electronic structure for parameters rel-
evant to the pnictides, for which SDW order is moderate, and
the two FSs involved in the SDW mixing are only partly
gapped. We found three bands near k= �0,0� and three bands
near k= �� ,�� in the folded BZ, and more FS crossings than
in the paramagnetic state. We calculated ARPES intensity
and found a number of features consistent with the data. In
particular, we found “Dirac points” in the dispersion near
�0,0� and an electron band and two hole “half bands” �hole
“blades”� near �� ,��.

We believe that the good agreement with ARPES experi-
ments is a strong argument in favor of the itinerant scenario
for the ferropnictides. We emphasize that the itinerant sce-
nario does not imply that the system must be in a weak-
coupling regime. Interactions in the pnictides are moderately
strong and, quite possibly, give rise to some redistribution of
the spectral weight up to high energies.9,24,42 The only re-
quirement for the applicability of our itinerant approach is
the existence of a substantial spectral weight at low energies,
where the system behaves as an interacting Fermi liquid.
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